Title: Identification of new, efficacious inhibitors of DNA-PK and their hypoxia activated pro-drugs

<u>Authors</u>: Sylviane Yoba¹, Jenny Cook¹, Ela Smiljanic-Hurley¹, Elliott Smyth¹, Simon Osborne¹, Callum Hamby¹, Martin Ambler¹, Zhi Yao¹, Steve Arns², Claudio Sturino², Jennifer Baker³, Alastair Kyle³, Andrew Minchinton³

1: LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK

2: adMare Bioinnovations, 2405 Wesbrook Mall 4th floor, Vancouver, BC V6T 1Z3, Canada

3: BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada

<u>Introduction</u>: DNA-PK is a crucial component of the non-homologous end joining (NHEJ) repair mechanism of radiation-induced DNA damage. As such, DNA-PK represents a validated therapeutic target for the treatment of cancer as a stand-alone agent or in combination with radiotherapy and chemotherapy. We have synthesised compounds (effectors) capable of inhibiting the phosphorylation of DNA-PK and converted them into pro-drugs that are only activated (converted to effector) in hypoxic tumour cells.

<u>Methods</u>: We set up a cellular assay targeting the inhibition of the phosphorylation of DNA-PK in normoxic conditions, using compounds created in-house. This allowed us to screen and identify potent inhibitors of DNA-PK and evaluate their pro-drugs. The best compounds were then tested in 3D spheroid tumour model for activity against normoxic and hypoxic cancer cells.

<u>Results</u>: Several effector-pro-drugs pairs were identified, having cellular potency. Several pro-drugs are as efficacious in hypoxic cells as their effectors

<u>Conclusion</u>: Efficacious pro-drugs of inhibitors of DNA-PK have been identified through their actions in hypoxic cells, and these are being further evaluated.