

Poster and Application Note

Linking Structure and Function Use of PDB data as baseline for in-solution characterization

Emil G.P. Stender¹, Henrik Jensen¹ ¹Fida Biosystems, Copenhagen (Søborg), Denmark, <u>www.fidabio.com</u>, <u>e-mail: eqps@fidabio.com</u>

INTRODUCTION

We present the Fidabio PDB (Protein Data Bank) Correlator which predicts the hydrodynamic radius (R_h) of proteins based on X-ray, Cryo-EM structural data or Al-generated structures like AlphaFold. The comparison of the $R_{\rm h}$ predictions with in-solution $R_{\rm h}$ measurements offers structural and functional information about the protein of interest. In the present work, we use the Fidabio PDB Correlator to predict the in-solution R_h of bovine β lactoglobulin, human serum albumin, bovine serum albumin and chicken lysozyme. Subsequently, using Fida 1 equipped with a UV fluorescence detector, the $R_{\rm h}$ of label-free proteins are experimentally measured in-solution and compared with the predicted R_h.

RESULTS

Using the Fidabio PDB Correlator, the PDB data are loaded into the Fidabio software which subsequently gives the predicted R_h and mass.

METHOD

For in-solution determination of R_h, we used the Fida 1 instrument employing 280 nm LED fluorescence detection. In this Fida 1 assay, the Bovine β -lactoglobulin (BLG), Human Serum Albumin (HSA), Bovine Serum Albumin (BSA) and Chicken lysozyme (LYZ) serve as (intrinsically) fluorescent "indicators". The buffer serves as the "analyte".

For predicting the R_h based on PDB structural data, we used the Fidabio PDB Correlator, integrated in the Fidabio software. Crystal structures were acquired from the Protein Data Bank (https://www.rcsb.org/).

Protein	PDB Code	Predicted R _h (nm)	Apparent <i>R</i> _h (nm)	Predicted Mw (kDa)	Theoretical Mw (kDa)
LYZ	1IEE	1.97	1.91 ± 0.01	14.51	14.31
BLG	1BEB	2.85	2.77 ± 0.06	36.21	36.58
HSA	1A06	3.5	3.81 ± 0.04	65.76	66.47
BSA	4F5S	3.52	3.53 ± 0.04	66.77	66.43

INSIGHTS IN BLG STRUCTURE USING THE FIDABIO PDB CORRELATOR

Fida 1 is used for in-solution determination of BLG R_h which is measured to be 2.77 \pm 0.06 nm.

The PDB code of BLG (1BEB) is loaded into the Fidabio PDB Correlator which predicts the R_h based on the imported structural data. The predicted R_h is 2.19 nm.

Fida 1 measurement $R_{\rm h}$ =2.77 ± 0.06 nm

The discrepancy between predicted $R_{\rm h}$ and experiment R_h values indicates that the insolution BLG structure might not be a monomer.

Cleaning up the file and using a homodimer structure, the Fidabio PDB Correlator gives a new R_h of 2.85 nm, which is within 2.8% of the experimental value of 2.77 ± 0.06 nm. This indicates that BLG is a homodimer, which is in agreement with the literature [1].

More data are presented in the Application

structure of BLG

Autosampler:

- 2x96 well plates
- 2x50 vials

Consumables: • Vials and/or

• 96 well plates HS-capillary

Note which can be accessed scanning the QR code at the upper left-hand corner.

CONCLUSIONS

In the present work, we show how the Fidabio PDB Correlator provides an accurate correlation (<9% error) between a protein's size in-solution (hydrodynamic radius) and structure. Structural data can be supplied both by experimentally solved and AI-generated structures. The correlation can generate information on the in-solution state of the protein of interest, like oligomerization and integrity, as well as insights on functionality.

¹Brownlow S. et al.; Bovine beta-lactoglobulin at 1.8 A resolution--still an enigmatic lipocalin., 1997, Structure; Vol 5, p. 481-495.