Development of a high-throughput MALDI-TOF MS drug discovery assay for ERAP1

Leonie Müller¹, Simon Peace², Melanie Leveridge³, Matthias Trost¹, Rachel Peltier-Heap³, Maria Emilia Dueñas¹

¹ Newcastle University Bioscience Institute, Faculty of Medical Sciences, Newcastle Upon Tyne, UK

² Medicinal Chemistry, GlaxoSmithKline, Stevenage, UK

³ Screening, Profiling and Mechanistic Biology, GlaxoSmithKline, Stevenage, UK

Introduction

MALDI-TOF MS has been exploited in high-throughput screening (HTS) campaigns to provide fast and label-free readout for *in vitro* assays.¹ Here, we describe the development and validation of a MALDI-TOF MS based drug discovery assay for the endoplasmic reticulum aminopeptidase 1 (ERAP1). ERAP1 can influence the peptide repertoire displayed on the cell surface for immune cell recognition and is therefore a target in immunooncology, and for auto-immune diseases.² ERAP1 activity is mediated by substrate properties, and thus screening with a label-free technique is vital.

Assay automation

Stable intra-plate and inter-day assay performance was the observed in absence of compounds.

'Robustness' set

'Validation' set

Contact: L.Muller2@newcastle.ac.uk

MALDI-TOF MS assay

- The *in vitro* enzyme assay is stopped by addition of an acidic solution containing an internal standard.
- The matrix is then mixed with the sample to aide analyte ionisation. Analyte ions are separated according to their mass-to-charge ratio (m/z).
- The detected ions and their intensities used are to determine enzymatic activity.

Limit of detection

Peptides	mass-to-charge ratio (<i>m/z</i>)			LOD (fmol)
	[M+H]+	[M+Na]+	[M+2Na-H] ⁺	
Substrate (YTAFRIRSI)	1126.6	1148.6	1170.6	0.5
Product (TAFRIRSI)	963.6	985.6	1007.5	1

Linearity of detection

- The peptides can be detected with sufficient (fmol) sensitivity.
- A heavy labelled internal standard (TAFRIRS (¹³C¹⁵N)) was used to reduce the signal variability and ensure linear detection.

- Screening for inhibitors was carried out with a substrate concentration around K_{M} .
- Enzyme titration was conducted to ensure linear reaction progression.

Assay validation

Assay platform comparison

Single concentration screening

- Screening of the 'ERAP1 binders' with an established RapidFire MS assay showed:
 - Similar hit reproducibility.
 - Hit matches with the MALDI-TOF MS assay.

platform comparable performance.

Conclusion

- We successfully developed and validated a novel MALDI-TOF MS assay for the identification of ERAP1 inhibitors.
- The assay showed sufficient stability, reproducibility and throughput to enable label-free HTS.

Comparison with an established RapidFire MS assay showed comparable performance by providing higher speed and reduced assay volumes.

Ongoing/ Future work

The activity of some hit compounds will be evaluated in cellular assays.

Acknowledgements

This work is supported by GlaxoSmithKline and the EPSRC.

References

- De Cesare V, Moran J, Traynor R, et al. High-throughput matrix-assisted laser desorption/ionization time-of-1. flight (MALDI-TOF) mass spectrometry-based deubiquitylating enzyme assay for drug discovery. Nat Protoc. 2020;15(12):4034-4057
- 2. Liddle J, Hutchinson JP, Kitchen S, et al. Targeting the Regulatory Site of ER Aminopeptidase 1 Leads to the Discovery of a Natural Product Modulator of Antigen Presentation. J Med Chem. 2020;63(6):3348-3358

