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and modelling T herv corple: e lling Figure 4: The live-cell (HeLa) method was set up using transient transfection, with Nano-Luciferase tagged BRD4
as a model. The ARV-771 PROTAC was used as a positive control for BRD4 degradation. The exponential decay rate-
constants (Riching et al.) derived from curve-fits generated a Z' compatible with compound screening.
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» Figure 6: To assess the high-throughput ChromLogD and EPSA methods on a set of uncharacterized degraders, we
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| of measured physicochemical properties and demonstrate the advantage of the high throughput with both methods.
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Summary
Advanced properties We show here the basis for a platform to rapidly develop novel bifunctional degraders. The platform rests on
* DMPK relevant = 3D PSA and chameleonic simulations high-throughput combinatorial chemistry to efficiently generate a high number of linker and ligase recruiter
PHETRIEESIENE ML eyt combinations for a given target. This, coupled with our high-throughput assays for assessment of degrader activity
and experimental physicochemical properties (EPSA, ChromLogD) quickly generates data to support compound
Model of PROTAC progression. Although not covered here, we also support identification and development of novel E3 ligands which
witiaiTerent iker can directly feed into the existing platform workflow to quickly generate and evaluate degraders working via novel
) . . . . ) i} . ubiquitin ligases.
Figure 3: A virtual library of novel degraders is built from a “toolbox” of pre-curated warheads and linkers, and \_ )
prioritised for synthesis based on fit to the ternary complex model(s) and “beyond rule of 5” predicted properties.
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